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Abstract.  Pyrite (FeS2) and pyrrhotite (FeS) were mined by open pit methods at 
Brukunga, South Australia, between 1955 and 1972.  Eight million tonnes of 
waste rock (2 wt.% S) and 3.5 Mt of tailings (1.7 wt.% S) were produced.  
Oxidation of this material, and remaining in-situ rock mass, has resulted in acid 
drainage (pH<3) with elevated sulphate and dissolved metals.  Prior to June 2003 
this acid drainage entered Dawesley Creek making the water unsuitable for 
livestock and irrigation use for up to 20 km downstream. The site is now under 
the care of the State Government. 
 
A lime neutralisation plant commissioned by the State Government in 1980 and 
currently operated by Primary Industries and Resources South Australia (PIRSA), 
a government body, was built to address water quality issues on site and reduce 
downstream impacts in Dawesley Creek.  Construction of a drain in June 2003 
diverted flow from Dawesley Creek around the mine enabling all acid drainage to 
be retained, collected and treated on site.  Upgrade of the existing plant to High 
Density Sludge (HDS) mode resulted in additional improvements in water quality, 
increased reagent efficiency and reduced overall treatment costs, including a 50% 
cost savings on sludge handling and disposal.  An additional plant has been 
commissioned to cope with increased treatment volumes brought about by 
improvements in the containment and collection of acid drainage from the site. 
 
Having substantially reduced the water quality risks to downstream users 
PIRSA’s ongoing rehabilitation of the site is aimed at lowering the acid load 
entering the treatment plants.  Future stages in the rehabilitation program include 
plans to move and cap waste rock piles and to continue to revegetate the site.  
This will further reduce treatment and sludge handling costs while maintaining 
water quality for users downstream of the site. 
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Introduction 

 

The Brukunga pyrite mine is located 4 km north of Nairne and 40 km east of Adelaide in the 

Mount Lofty Ranges of South Australia (Figure 1).  Iron sulphide (pyrite and pyrrhotite) was 

mined at the site between 1955 and 1972.  During mining operations, two large waste rock piles 

were generated from approximately 8 million tonnes of sulphidic overburden material 

(2 wt.% S), and a valley-fill tailings facility adjacent to the mine was filled with 3.5 million 

tonnes of sulphidic sand-tailings (1.7 wt.% S) (PIRSA, 2003a). 

Acid and Metalliferous Drainage (AMD) has been a significant issue at the Brukunga mine 

as a result of the oxidation of pyrite and pyrrhotite minerals within the waste rock piles, tailings 

facility and the unsaturated zone of the in-situ rock mass.  This process continues to generate 

acidic water at the site, with pHs of 2.5-2.9 and highly elevated sulphate and metal 

concentrations recorded between September 1999 and December 2003.   

Until June 2003, acid drainage entered Dawesley Creek, which flowed directly through the 

Brukunga mine site.  Elevated levels of sulphate and metals (eg. aluminium, iron, cadmium and 

manganese) were carried downstream into Mt. Barker Creek, Bremer River and finally into Lake 

Alexandrina, making the water unsuitable for livestock and irrigation use up to 20 km 

downstream of the mine site.  PIRSA are working to reduce risks and lower treatment costs 

associated with the abandoned mine. 

 

Site History  

 

The ‘historic’ Brukunga mine has not been worked since the mine closed 31 May 1972.  The 

mine was established in the 1950’s as a source of sulphur to be converted to sulphuric acid for 

use in the manufacture of superphosphate fertiliser.  At the time superphosphate fertiliser was in 

demand due to the poor quality of Australian soils and the expansion of post-war agricultural 

activities.   

The development of the mine was encouraged and sponsored by both the State and 

Commonwealth Governments as part of the drive for self-sufficiency and full employment.  The 

State Government fostered the formation of the company, Nairne Pyrites Pty Ltd, a consortium 



of three fertiliser manufacturers and a mine operator; ie. Cresco Fertilisers; Adelaide Chemical 

Co; Wallaroo–Mt Lyell Fertilisers; and The BHP Company. 

 
Figure 1.  Location of the Brukunga Pyrite Mine and key site features. 

 

The mine commenced production in June 1955 and continued for 17 years, closing on the 

31st May 1972.  The mine produced 5.5 million tonnes of iron sulphide (pyrite and pyrrhotite) 



ore at ~380,000 tonnes per annum.  The ore had a grade of 11% sulphur and was crushed and 

processed on site to produce a 40% sulphur concentrate.  

Iron sulphide was quarried from the side of two steep hills using a power shovel and trucks.  

The mine concentrate was trucked to a rail siding at Nairne and then railed to Snowdens Beach, 

Port Adelaide where it was converted to sulphuric acid (H2SO4).  Imported phosphate rock was 

treated with the acid to produce superphosphate fertiliser to sustain South Australian agriculture. 

To encourage mining of pyrite for production of sulphuric acid, the Commonwealth paid a 

bounty via the Sulphuric Acid Bounty Act, 1954 and the Pyrites Bounty Act, 1960.  Only two 

mines were established in Australia specifically to mine pyrite ore, ie. Brukunga and the King 

Mine at Norseman, Western Australia.  In the late 1960’s cheaper sources of sulphur became 

available mainly due to Canada’s refining of ‘sour natural gas’.  The government withdrew the 

pyrite subsidy on 31st May 1972 and both pyrite mines ceased mining operations on the same 

day. 

Following mine closure, the crushers and metallurgical plant were dismantled and the mine 

office and workshops later became the start of the Country Fire Service (CFS) State Training 

Headquarters.  The remaining quarry bench is 1.8 km long with 2 high walls 70 and 85 m laid 

back at 45° and 50°.  The 8 Mt of rock removed to access the pyrite was discarded to form the 

north and south waste rock piles.  A small rock pile, south-east of the open cut, has been 

rehabilitated. 

Concentration of the sulphide ore on site involved crushing and grinding the ore to a fine 

sand, with 80% passing a 75 µm sieve.  This produced a total of 3.5 Mt of mill tailings that was 

pumped to the eastern side of Nairne Road to fill a shallow farm valley.  The tailings at the front 

edge is 30 metres above the valley floor and covers an area of 28 hectares. 

After closure in 1972, Nairne Pyrites Pty Ltd employed two caretakers to collect and pump 

acid drainage to a large evaporation lake on the tailings facility.  In February 1974, a summer 

storm caused the lake to overflow and it was soon realised that water levels could not be 

controlled solely by evaporation.  The Department of Mines and Australian Mineral 

Development Laboratories (AMDEL) began to investigate site water quality issues.  In August 

1977, the State Government accepted responsibility for rehabilitation of the site.  

In September 1980, the government commissioned a lime treatment plant to treat the acid 

water.  The Department of Engineering and Water Supply (EWS) were appointed the operators 



and within 5 years of successful treatment a 10 ha lake of acid water was removed from the 

tailings facility.  The plant was then used to treat acidic seepage percolating through the tailings 

embankment and acid drainage transferred by 12 float-activated pumps from various locations 

around the quarry bench and waste rock piles.  The collected water is held in two ponds located 

at the base of the tailings embankment.  Polluted water from the holding ponds is pumped to the 

plant by a range of six varying capacity screw-pumps mounted in parallel.  Feed to the plant 

(from 17 kL/hour to a peak of 50+ kL/hour) is controlled by operating one or more of these 

pumps. 

Prior to 2003, where possible, contaminated water from Dawesley Creek was diverted, via 

the collection ponds, through the lime treatment plant before being discharged back into the 

creek.  However, the capacity of the treatment plant was frequently exceeded due to high flows 

in Dawesley Creek, especially during the wetter winter months. 

Despite all the work done from 1980 to 2003 to intercept and treat acid drainage, only 

approximately half the pollution from the site was treated.  The remnant 50% or 

~600 tonnes/year of sulphate escaped to pollute the flow in Dawesley Creek (PIRSA, 2003b). 

 

Site Issues 

 

The main environmental risk at Brukunga is caused by the natural oxidation of pyrite and 

pyrrhotite minerals within the waste rock piles, tailings facility and unsaturated zone of the in-

situ rock mass, producing acid drainage that may enter Dawesley Creek. 

In 1993-94 the Australian Nuclear Scientific and Technology Organisation (ANSTO) were 

engaged to provide an estimate of how long the oxidation would continue.  Temperature and 

oxygen concentrations were monitored in a series of boreholes drilled into the tailings and rock 

piles, and results indicated that acid-forming reactions are likely to continue for between 240 and 

750 years (ANSTO, 1994). 

In March 1999, the Brukunga Mine Site Remediation Board (BMSRB) replaced the 

technically based ‘Brukunga Taskforce’ placing emphasis on local community involvement in 

developing new management solutions to lower the risks associated with the acid drainage.  The 

BMSRB advises the State Government Minister for Primary Industries and Resources on 

strategies for environmental improvement and has representatives from the Dawesley Creek 



Catchment Landcare Group, the District Council of Mount Barker, a local community 

representative, and members from PIRSA (Minerals and Energy Division). 

In 2001, after considering various studies, the BMSRB recommended a $26M (AUD) 

10 year program of new initiatives to the Minister and government (PIRSA, 2002).  The 

government accepted the program involving: 1) creek diversion and containment of site acid 

drainage, 2) doubling the peak acid treatment capacity and 3) decreasing the acid seepage by 

relocating / capping waste rock piles. 

 

Containment of site acid drainage 

 

As a priority of the remediation program, acid drainage produced on site had to be contained 

and the amounts entering the local waterways substantially reduced.  The key to this was the 

diversion of Dawesley Creek, and containment of acid runoff and seepage on site. 

In June 2003, Stage 1 of the program, construction of the Dawesley Creek diversion, was 

successfully completed.  The diversion isolates Dawesley Creek from the pollution generated at 

the mine site.  The 1.7 km diversion includes 780 metres of 1.5 metre diameter reinforced 

concrete pipes, 175 metres of High-Density Polyethylene (HDPE) plastic pipe and 750 metres of 

drilled and blasted open channel (Figure 2).  The original section of creek, adjacent to the waste 

rock piles, now provides a sink for the collection of acid drainage that previously flowed directly 

into the creek.  Construction of the drain resulted in an immediate improvement in water quality 

in Dawesley Creek downstream of the mine for the first time in 50 years. 

     
Figure 2.  Dawesley Creek diversion drain. Laying pipe for the underground segments of the 
drain (right) and open channels (left). 



 

On completion of the Dawesley Creek diversion it became possible to intercept 90-95% of 

the pollution, with most of the loss occurring during high rainfall events.  During these high 

rainfall events, any loss of acid drainage off site was substantially diluted. 

 

Slaked-lime Treatment Plant 

 

The vast improvements in the capture and containment of acid drainage on site brought about 

by the Dawesley Creek diversion required the upgrade of treatment facilities to cope with the 

increased treatment requirements.  Stage 2 of the remediation program required the doubling of 

the peak acid treatment capacity of the site.  This was achieved by upgrading the existing plant 

and commissioning of a new plant. 

 

Existing Plant 

The existing treatment plant was designed to treat 20 kL of acid drainage per hour, but has 

dealt with flow rates between 10 and 35 kL per hour.  Treatment requirements are greatly 

affected by seasonal and local rainfall events.  During summer the plant is often shut down, but 

during the wet winter months (June through September) the plant operates 24 hours/day and 7 

days/week to maintain water levels in the North and South AMD holding ponds.   

Untreated water typically has low pH (2.5-2.9), high conductivity (6,970-11,800 µS/cm), 

high concentrations of sulphate (8,240-14,000 mg/L) and elevated Al, Cd, Cr, Cu, Fe, Pb, Mn, Ni 

and Zn.  This water is pumped from the North AMD holding pond (Figure 3) into the first of 

three 12 kL reactor tanks (Reactor 1) in the treatment plant (Figure 4).   

Carbide lime slurry is mixed in a 50 kL below ground tank (Figure 5), and dispensed to 

Reactor 1 as required to achieve a pH of approximately 9.5 in water exiting the plant.  The 

carbide lime is a form of hydrated lime that is a by-product of the acetylene manufacturing 

process.  The reagent therefore contains minor impurities (eg. CaC2) that are not present in 

conventional hydrated lime.  Carbide lime slurry is delivered to the site by road tanker 3 days a 

week.  Excess slurry is stored in an evaporation pond to the west of the plant.  Partially-dried 

carbide lime from the evaporation pond is transferred to one of two above-ground temporary 

storage areas.  When required, the partially-dried carbide lime is added (with water) to the 50 kL 



below ground lime slurry tank.  Annual consumption of reagent is variable but averages 

approximately 600 dry tonnes per annum. 

      
Figure 3.  Acid drainage from the site is 
pumped to the North AMD holding pond 
(shown) prior to treatment. 

Figure 4.  Reactors 1, 2 and 3 as viewed from 
the thickener tank (existing plant). 

 

    
Figure 5.  Below ground hydrated lime 
storage, mixing and dosing system. 

Figure 6.  Thickener / clarifier tank. 

 

Water from Reactor 1 flows by gravity to Reactors 2 and (subsequently) 3.  The use of three 

reactor vessels provides the retention time required for the completion of the treatment reactions.  

Water exiting Reactor 3 then flows into a below ground sump.  When the sump is full, water is 

pumped up to a 390 kL thickener / clarifier tank.  Flocculant is dispensed into the stream of 

water from the below ground sump before it enters the thickener / clarifier tank (Figure 6).  Clear 

supernatant water from the thickener / clarifier tank overflows to a clarification pond before 

being released into Dawesley Creek, downstream of the mine site. 



Settled sludge in the base of the thickener / clarifier tank is either recycled into Reactor 2 or 

pumped to one of two sludge ponds located on the tailings facility.  The low-density sludge 

exiting the plant prior to its upgrade was between 3 and 5 wt% solids. 

Prior to its upgrade the existing plant treated 54,258 kL and 123,098 kL of low pH water in 

2002 and 2003 respectively. This treatment required 484 and 723 dry tonnes of carbide lime 

respectively.  Increased treatment volumes in 2003 corresponded to the higher rainfall and the 

diversion of Dawesley Creek in June 2003, which enabled virtually all AMD from the site to be 

collected for treatment.  The pH of water exiting the thickener / clarifier tank in 2003 ranged 

from 7.5 to 11.0 (average 9.2).  The pH decreased significantly in the clarification pond 

(minimum 6.5, average 8.6, maximum 10.2) and further decreased prior to being released to 

Dawesley Creek (minimum 6.0, average 7.5, maximum 9.3). The low-density sludge produced 

contained approximately 4.4 wt% solids. 

Operating in Low Density Sludge (LDS) mode the pH increased from 2.7 to around 7.4-8.4 

after addition of lime to the AMD in Reactor 1.  Electrical Conductivity (EC) decreased from 

10,300-10,410 µS/cm to 4,180-5260 µS/cm, and the water had become highly reduced, with 

oxidation-reduction potential (ORP) values as low as -246 mV.  Variation in pH, EC and ORP 

with depth in Reactor 1 indicated that mixing was inefficient. 

As water flowed from Reactor 1 to 3 the pH generally decreased (eg. 10.9-9.3) along with the 

EC (eg. 4,300-3,933 µS/cm), and the water became less reduced (eg. ORP increased from -148 

to -80 mV). 

Thickener / clarifier tank overflow water was characterised by relatively high pH (8.9-10.0), 

lower EC (3,833-3,857 µS/cm) and still relatively reduced water (eg. ORP values -78 to 

+21 mV). 

Water in the clarification pond had significantly lower pH (6.5-8.0) and higher EC (4,348-

4,460 µS/cm), indicating the presence of mineral acidity in the thickener / clarifier tank overflow 

water.  

Tests carried out by Earth Systems (2004) indicated that metal removal efficiencies of at least 

98 wt.% are likely to have been routinely achieved in the existing plant when it was operating in 

Low Density Sludge (LDS) mode.  Low concentrations of redox sensitive soluble components 

(Fe and Mn) accounted for the residual 2 wt.%.  As a result of this low soluble metal content, 

treated water was being discharged from the plant with low level acidity values (10-



100 mg/L CaCO3).  Approximately 1.5 to 2 log unit falls in pH were being recorded between the 

plant overflow and the Dawesley Creek discharge as a result of ongoing oxidation and related 

acidification of the treated water. 

 

Upgrade of existing plant 

The identification of several inefficiencies in the existing plant was detailed in a report 

commissioned for Stage 2 of the site remediation works (Earth Systems, 2004).  Key 

inefficiencies included: 1) the incomplete oxidation of AMD during the treatment process, which 

allowed water to be discharged with residual mineral acidity, and 2) large volumes of low 

density sludge that presented storage and handling problems. 

To address the low levels of redox sensitive soluble metals being discharged from the plant, 

modifications were made to fully oxidize the treated water stream.  Tests were conducted on the 

plant operating in LDS mode with oxygen supplied via a compressor.  This resulted in very low 

to below detection metal concentrations and high residual alkalinities (1,300-3,600 mg/L CaCO3 

equivalent) in the discharge stream.  As a result a high capacity air blower (115-130 m3/hour was 

added to the existing plant (Reactor 2 and 3). 

Issues associated with sludge production and storage were addressed by converting the plant 

to High Density Sludge (HDS) mode.  Conversion to HDS mode was achieved by pre-treating 

the raw acid water feed in Reactor 1 with high volumes of alkaline sludge from the thickener / 

clarifier tank.  This raises the pH to 6.5 before new lime slurry is added in Reactor 2.  Recycling 

of sludge within the treatment plant has improved reagent efficiencies and reduced sludge 

volumes by increasing the sludge density.  An advanced polymer flocculant AN905MPM is 

added to the thickener tank to assist settling and further increase sludge density. 

The sludge produced in the plant is recirculated for the pre-treatment of the raw acid feed for 

around 5 or 6 days or until a sludge density of 30 - 35 wt.% solids is achieved in the thickener 

tank.  This is empirically determined by increased torque load on the thickener rake.  A batch of 

the high density sludge is then discharged from the thickener for about 8 hours and pumped to 

the sludge drying ponds to allow for evaporation of residual water. 

Most of the modification to the existing plant was completed at minimal cost.  Aeration of 

the reactors required the purchase of an air blower while conversion of the plant to HDS mode 

required the redirection of a number of pre-existing pipes. 



 

New plant 

In May 2005, a second parallel series of 3 larger reaction vessels was installed to effectively 

double the treatment capacity of the plant (Figure 7).  This new plant also operates in HDS mode 

and has a design capacity of 25 kL/hour.  The installation of the new plant and upgrade to the 

existing plant was completed at a cost of $750,000 (AUD).  Improvements in sludge density and 

settling characteristics enabled the existing thickener to accommodate the sludge output of both 

plants. 

    
Figure 7. New treatment plant showing second 
parallel series of reaction vessels (upper left) 
with existing upgraded plant (lower right). 
 

Commissioning of the new plant along with the upgrade of the existing plant has greatly 

improved the efficiency of reagent use. Recent estimates suggest that the volume of AMD 

treated per dry tonne of lime reagent is increasing and results also indicate an improvement in the 

water quality being discharged. 

 

Sludge 

Conversion of the existing plant to HDS mode has lead to a reduction in the volume of 

sludge produced and costs savings in the order of $30,000 (AUD) per annum related to the 

settling pond desludging requirements.  Sludge from the thickener / clarifier is now being 

produced at up to 42 wt.% solids with the HDS process in comparison to 3-5 wt% prior to the 

upgrade of the existing plant.  This equates to a reduction of greater than 50% in the total volume 

of sludge produced. 



    
 

     
 
Figure 8. Sludge pond. Low-density sludge prior to plant upgrade partly fills one of the two 
sludge ponds (upper left). Sludge pond full of partially air dried sludge prior to desludging 
(upper right). High-density sludge entering sludge pond after plant upgrade (lower left and right). 
 

Examination of the treatment sludge indicates it is dominated by crystalline material (65-

75%) of which gypsum (CaSO4.2H2O) is the dominant phase (Raven and Keeling, 2000; 

Wollard, 2003 and Earth Systems, 2004). Other phases present include minor bassanite 

(2CaSO4.H2O), quartz (SiO2) and calcite (CaCO3). 

When the plant was operating in LDS mode, the north and south sludge ponds located at the 

back of the tailings facility were desludged every summer to provide space for the following 

years production of sludge.  The increased sludge density, resulting from the HDS process and 

other plant modifications, will reduce the frequency at which these ponds are desludged from 

annually to every 2-3 years.  This represents an estimated cost saving of between 50 and 66% on 

desludging costs alone. 



An additional benefit of the increased density of the sludge is less water is being pumped out 

to the sludge ponds.  Estimates conducted by Earth Systems (2004), based on volumes of sludge 

produced and available sludge storage volumes, indicated that substantial volumes of water 

within the sludge ponds are lost by means other than evaporation.  This water loss is most likely 

due to infiltration through the walls and base of the sludge ponds.  Given the sludge ponds are 

situated on top of the backfilled tailings facility, the water had been infiltrating into the tailing 

sand and contributing to the seepage from the base of the tailings embankment.  An increase in 

sludge density and decrease in water in the sludge ponds is likely to reduce the volume of water 

seeping from the tailings embankment and therefore reduce the volume of water requiring 

treatment. 

Potential on site applications for the sludge are being examined.  Currently some of the 

treatment sludge is being successfully used as a growth medium or soil amendment.  It is also 

being considered for use as a water shedding cover for the tailings facility. 

 

Tailings 

 

Rehabilitation and revegetation of the tailings facility commenced in 1987 with trials using a 

thin (30 to 50 cm) soil and rubble layer spread over the tailings.  Each year several thousand 

native tube-stock have been planted.  The vegetation has reduced surface erosion, improved the 

visual appearance, and provided habitat for native fauna.  In addition to this the capping and 

revegetation of the tailings facility has acted as a store and release cover, forming an evapo-

transpiration layer that serves to reduce the deep percolation of rain into the tailing sand.  

Moisture is temporarily held in the root zone of the plants and from there it evaporates or is 

drawn up into the vegetation.  This has greatly reduced deep percolation and hence the quantity 

of acid seeping from the toe of the tailings embankment.  Measurements of depth to ground 

water in boreholes recorded each year indicate that the tailings facility is continuing to dry 

internally.  This is also confirmed by decreasing quantities of seepage measured at a v-notch weir 

below the tailings embankment. 

Following the ongoing efforts of PIRSA staff to lower seepage from the tailings 

embankment, the seepage contributed only 50 wt.% (28,031 kL) and 25 wt.% (25,169 kL) of the 

total acidity load to the existing treatment plant in 2002 and 2003 respectively (Earth Systems, 



2004).  Tailings embankment seepage is likely to have contributed the majority of the acidity 

load arriving at the plant prior to decommissioning of ponds on top of the tailings facility and 

revegetation of its surface. 

A great deal of the success of the revegetation program was due to the use of ‘biosolids’ from 

the annual clean out of Waste Water Treatment Plants and from daily truckloads of wet sludge 

cleared from local domestic septic tanks.  The biosolids were spread thinly over the tailings 

facility surface, contributing to increasing soil cover and providing moisture, nutrients and 

bacteria necessary to invigorate healthy plant growth. 

 

   
Figure 9. Aerial view of the progressive rehabilitation of the tailings storage facility.  Far left: 
1973, 12 months after closure of the site.  Middle: 1985, remaining acid water on tailings facility 
after initiation of treatment in 1980. Right: 1997, revegetated surface of the tailings facility. 
 
 

Waste Rock 

The third stage in the rehabilitation works at the Brukunga site involves the reduction of acid 

generation and seepage on site.  The key to this will be the rehabilitation of the waste rock piles 

on site.  Currently waste rock piles are located along the base of the open cut bench and have not 

been capped.  This allows uncontrolled infiltration of water into the piles, and results in seepage 

of acidic drainage generated within the piles (Figure 9).  

 



   
Figure 9. Waste rock piles at the Brukunga site, to be rehabilitated during Phase 3 of the 
remediation program. 

 

A number of options are being considered for rehabilitation of the waste rock piles.  These 

range from capping of the existing piles to completely relocating the waste rock, either on or off 

site.  A proposal is currently being considered to relocate the 8 Mt of waste rock back to the open 

cut and blend it with imported limestone marl. At present, cost estimates place this option at 

$3M/year (AUD) over 7 years.  On completion of the waste rock relocation and remediation, it is 

envisaged that acid seepage from the mine site will significantly diminish, resulting in greatly 

reduced ongoing treatment and maintenance costs. 

 

Summary 

 

Rehabilitation and treatment plant upgrade works have significantly improved the water 

quality downstream of the Brukunga mine site, dramatically reducing the off site risks associated 

with acid generation on site.  In the process, upgrade of the AMD treatment plant from a Low 

Density Sludge to a High Density Sludge system, has resulted in significantly reduced costs 

(>50% ie. $30,000 (AUD) per annum) associated with sludge handling and disposal.  Recent 

estimates also suggest improvements in reagent efficiency, with a higher volume of AMD treated 

per tonne of lime reagent used. 

Future rehabilitation plans are now focussing on reducing ongoing treatment costs further by 

lowering the acid load entering the plant.  This is being addressed by plans to relocate and cap 

exposed waste rock piles and continue to revegetate the site. 
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Acronyms 

 

AMD   Acid and metalliferous drainage 

AMDEL  Australian Mineral Development Laboratories 

ANSTO  Australian Nuclear Scientific and Technology Organisation 

AUD   Australian dollars 

AN905MPM  Specific type of advanced polymer flocculant 

BMSRB  Brukunga Mine Site Remediation Board 

CFS   Country Fire Service 

EC   Electrical Conductivity 

EWS   Department of Engineering and Water Supply 

HDPE   High-Density Polyethylene 

HDS    High Density Sludge 

LDS   Low Density Sludge 

ORP   Oxidation-reduction potential 

PIRSA   Department of Primary Industries and Resources South Australia 
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